Perfect — let’s merge ATL passenger flow with the AI pentad to make the analogy concrete. Think of concourses as parallel processing lanes, terminals as central hubs, and passengers as information packets. Minimalist ASCII again:
┌──────────────────────────┐
│ World AI / ATL │
│ (Environment / Gates) │
└──────────┬──────────────┘
│
▼
┌──────────────────────────┐
│ Perception AI / ATL │
│ (Screening, sorting, │
│ TSA + Security flow) │
└──────────┬──────────────┘
│
┌──────────────────┴──────────────────┐
│ │
▼ ▼
┌───────────────┐ ┌───────────────┐
│ Agentic AI │ │ Generative AI │
│(Actions, │ │(Content, │
│ Gate assignment│ │ Flight plans,│
│ Push passengers│ │ Info output) │
└───────┬───────┘ └───────┬───────┘
│ │
└───────────┬───────────┬─────────────┘
▼ ▼
┌──────────────────────────┐
│ Embodied AI / ATL │
│ (Integrated flow: planes │
│ taxi, concourse usage, │
│ moving walkways) │
└──────────────────────────┘
Essentially, ATL is a physical instantiation of an agentic + generative system integrated into an embodied loop, which explains both capacity (busiest airport) and experience (feels smooth to passengers).
I can also draw a flow-rate version showing “passenger throughput per concourse” alongside AI function — literally a dE/dt map if you want it super quantitative.
Do you want me to do that?