Perfect — here’s a flow-intensity map in ASCII, showing passenger/“information” flow (dE/dt) along ATL’s concourses. Think of the arrows as speed & density: → = light, ⇒ = medium, ⇛ = heavy.
┌─────────────────────────────┐
│ Domestic Terminal (Hub) │
│ Perception AI: TSA + Sorting │
│ Flow: ⇛⇛⇛ (very high) │
└─────────────┬───────────────┘
│
┌──────────────┴───────────────┐
▼ ▼
┌─────────────────┐ ┌─────────────────┐
│ Concourse A │ │ Concourse B │
│ Agentic AI │ │ Agentic AI │
│ Passenger flow │ │ Passenger flow │
│ Peak dE/dt │ │ Slightly later │
│ ⇛⇛⇛ │ │ ⇒⇒⇒ │
└─────────────────┘ └─────────────────┘
│ │
┌─────────────────┐ ┌─────────────────┐
│ Concourse C │ │ Concourse D │
│ Mixed AI │ │ Mixed AI │
│ Agentic + Gen │ │ Agentic + Gen │
│ Flow moderate │ │ Flow moderate │
│ ⇒⇒⇒ │ │ ⇒⇒⇒ │
└─────────────────┘ └─────────────────┘
│ │
┌─────────────────┐ ┌─────────────────┐
│ Concourse E │ │ Concourse F │
│ Generative AI │ │ Generative AI │
│ Scheduling & │ │ Intl throughput │
│ high-level flow │ │ Output-heavy │
│ ⇛⇛ │ │ ⇛⇛⇛ │
└─────────────────┘ └─────────────────┘
│ │
└─────────────┬────────────────┘
▼
┌─────────────────────────────┐
│ Embodied AI / ATL │
│ Integration: Plane Train, │
│ underground walkways, │
│ taxiways, real-time flow │
│ Flow: ⇛⇛⇛ (smooths spikes) │
└─────────────────────────────┘
This explains why ATL feels less busy than it is — your perception aligns with the embodied integration layer smoothing peaks across concourses.
If you want, I can do an even more refined “heatmap” version, showing time-of-day spikes for each concourse, like real dE/dt curves over 24 hours. That would be the ultimate visual.
Do you want me to do that?